AutoAnomaly#

../_images/autoanomaly.png

Use DataRobot Autopilot to train diverse anomaly detections models on a dataset.

Prediction and deployment methods execute on the anomaly detection model with the highest synthetic AUC at the time of calling. Training is performed within a new, automatically created DataRobot project.

Usage#

Train#

import pandas as pd
import datarobotx as drx

train = pd.read_csv('https://s3.amazonaws.com/datarobot_public_datasets/anomaly_use_cases/network_intrusion/Anomaly_Detection_kdd99_train_nolabel_v2.csv')
model = drx.AutoAnomalyModel().fit(train)

Predict#

test = pd.read_csv('https://s3.amazonaws.com/datarobot_public_datasets/anomaly_use_cases/network_intrusion/Anomaly_Detection_kdd99_test.csv')
predictions = model.predict(test)
anomaly_scores = model.predict_proba(test)

Deploy#

deployment = model.deploy()

Time Series#

Time series anomaly detection models are also supported. See the AutoTS docs for an example.

API Reference#

AutoAnomalyModel([name])

Automated anomaly detection orchestrator.

AutoTSModel([name, feature_window, ...])

AutoTS orchestrator.

DRConfig([Data, Target, Featurization, ...])

DataRobot configuration.

Deployment([deployment_id])

DataRobot ML Ops deployment.