DataDictChain#
- class datarobotx.llm.DataDictChain(**kwargs)#
Generate a data dictionary using an LLM.
- Parameters:
as_json (bool, default = False) – Whether chain output should be returned as a natural language or json str
def_feature_chain (LLMChain, optional) – Chain to be used for defining individual features. If not provided, will be initialized with a default chain that prompts and retrieves individual definitions
verbose (bool, default = False) – Whether the chain should be run in verbose mode; only applies if the default feature definition chain is being used
Examples
>>> import json >>> import langchain >>> import os >>> from datarobotx.llm import DataDictChain >>> use_case_context = "Predicting hospital readmissions" >>> dr_project_id = "XXX" >>> os.environ["OPENAI_API_KEY"] = "XXX" >>> llm = langchain.llms.OpenAI(model_name="text-davinci-003") >>> chain = DataDictChain(llm=llm) >>> outputs = chain(inputs=dict(project_id=dr_project_id, context=use_case_context))
Chain inputs and outputs:
Chain inputs.
Chain outputs.
- property input_keys: List[str]#
Chain inputs.
- contextstr
Context of the problem / use case in which a feature definition is being requested
- featuresstr
The feature(s) for which a definition is being requested (comma separated)
- project_idstr, optional
DataRobot project_id; if provided, EDA data will be retrieved from DR if available and will be used to attempt to improve data dictionary completions
- property output_keys: List[str]#
Chain outputs.
- data_dictstr
Natural language or json string representation of data dictionary depending on how the chain was initialized with parameter ‘as_json’
- verbose: bool#
Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose().