AutoML#
Use DataRobot Autopilot to train challenger models on a dataset and establish a champion
Prediction and deployment methods execute on the present champion model at the time of calling. Training is performed within a new, automatically created DataRobot project.
DataRobot provides a large number of optional configuration settings that influence the
Autopilot process. See the drx
DRConfig
class and it’s attributes
to explore available options.
Usage#
Train#
import pandas as pd
import datarobotx as drx
df = pd.read_csv('https://s3.amazonaws.com/datarobot_public_datasets/10K_2007_to_2011_Lending_Club_Loans_v2_mod_80.csv')
model = drx.AutoMLModel()
model.fit(df, target='is_bad')
Train with additional configuration#
model_2 = drx.AutoMLModel(name="My project name")
config = model_2.get_params()
config.Modeling.AutoML.blend_best_models = False
model_2.set_params(**config)
model_2.fit(df, target='is_bad')
See also
AutoMLModel
can also be used with OTV (time-aware partitioning) - see this workflow for
more information.
Predict#
test_df = pd.read_csv('https://s3.amazonaws.com/datarobot_public_datasets/10K_2007_to_2011_Lending_Club_Loans_v2_mod_20.csv')
predictions = model.predict(test_df)
class_probs = model.predict_proba(test_df)
Deploy#
deployment = model.deploy()
API Reference#
|
AutoML orchestrator. |
|
DataRobot configuration. |
|
DataRobot ML Ops deployment. |