PartitioningUserConfig#

class datarobotx.PartitioningUserConfig(user_partition_col=None, training_level=None, validation_level=None, holdout_level=None, cv_holdout_level=None)#

User partitioning configuration.

Parameters that default to ‘None’ (or are omitted by the user) are overridden to server-side defaults at runtime. Consult the DataRobot REST API and GUI documentation for additional information on each parameter.

Parameters:
  • user_partition_col (str) – The name of the column containing the partition assignments.

  • training_level (str or int or float) – The value of the partition column indicating a row is part of the training set.

  • validation_level (str or int or float) – The value of the partition column indicating a row is part of the validation set.

  • holdout_level (str or int or float) – The value of the partition column indicating a row is part of the holdout set. This level is optional - if not specified or if provided as null, then no holdout will be used in the project. However, the column must have exactly 2 values in order for this option to be valid

  • cv_holdout_level (str or int or float) – The value of the partition column indicating a row is part of the holdout set. This level is optional - if not specified or if provided as null, then no holdout will be used in the project. The rest of the levels indicate which cross validation fold each row should fall into.

See also

DRConfig

Configuration object for DataRobot project and autopilot settings, also includes detailed examples of usage

Attributes:

cv_holdout_level

The value of the partition column indicating a row is part of the holdout set.

holdout_level

The value of the partition column indicating a row is part of the holdout set.

training_level

The value of the partition column indicating a row is part of the training set.

user_partition_col

The name of the column containing the partition assignments.

validation_level

The value of the partition column indicating a row is part of the validation set.

Inherited methods:

keys()

rtype:

Collection[str]

to_dict()

Return configuration as a dict.

property cv_holdout_level: str | int | float#

The value of the partition column indicating a row is part of the holdout set. This level is optional - if not specified or if provided as null, then no holdout will be used in the project. The rest of the levels indicate which cross validation fold each row should fall into.

Notes

cv_holdout_level : str or int or float

property holdout_level: str | int | float#

The value of the partition column indicating a row is part of the holdout set. This level is optional - if not specified or if provided as null, then no holdout will be used in the project. However, the column must have exactly 2 values in order for this option to be valid.

Notes

holdout_level : str or int or float

to_dict()#

Return configuration as a dict.

Return type:

Dict[str, Any]

property training_level: str | int | float#

The value of the partition column indicating a row is part of the training set.

Notes

training_level : str or int or float

property user_partition_col: str#

The name of the column containing the partition assignments.

Notes

user_partition_col : str

property validation_level: str | int | float#

The value of the partition column indicating a row is part of the validation set.

Notes

validation_level : str or int or float