DRConfig#
- class datarobotx.DRConfig(Data=None, Target=None, Featurization=None, Partitioning=None, Modeling=None, Metadata=None)#
DataRobot configuration.
Parameters that default to ‘None’ (or are omitted by the user) are overridden to server-side defaults at runtime. Consult the DataRobot REST API and GUI documentation for additional information on each parameter.
- Parameters:
Data (dict or DataConfig) – Row and column selection configuration
Target (dict or TargetConfig) – Target configuration
Featurization (dict or FeaturesConfig) – Featurization configuration
Partitioning (dict or PartitioningConfig) – Partitioning configuration
Modeling (dict or ModelingConfig) – Modeling configuration
Metadata (dict or MetadataConfig) – DataRobot metadata and worker configuration
Examples
Direct configuration object construction
>>> from datarobotx import DRConfig >>> config_1 = DRConfig()
Configuration object construction via abstraction get_params()
>>> from datarobotx.models.automl import AutoMLModel >>> model_1 = AutoMLModel(name='elated-varahamihira') >>> config_2 = model.get_params()
Dictionary representation of configuration
>>> config_2 {'project_description': 'my_description', 'project_name': 'elated-varahamihira'}
Object specification through nested attributes (useful with autocomplete discovery)
>>> config_2.Metadata.project_description = 'my_description'
Configuration of abstractions using a config object, dictionary, or keyword arguments
>>> model_1.set_params(**config_2).get_params() {'project_description': 'my_description', 'project_name': 'elated-varahamihira'} >>> my_dict = {'project_description': 'my_new_description'} >>> model_1.set_params(**my_dict).get_params() {'project_description': 'my_new_description', 'project_name': 'elated-varahamihira'} >>> model_1.set_params(project_name='my_new_name').get_params() {'project_description': 'my_new_description', 'project_name': 'my_new_name'}
Construction of abstractions using a configuration object
>>> from datarobotx.models.automl import AutoMLModel >>> model_2 = AutoMLModel(**config_2) >>> model_2.get_params() {'project_description': 'my_description', 'project_name': 'elated-varahamihira'}
Attributes:
Row and column selection configuration.
Featurization configuration.
DataRobot metadata and worker configuration.
Modeling configuration.
Partitioning configuration.
Target configuration.
Inherited methods:
keys
()- rtype:
to_dict
()Return configuration as a dict.
- property Data: DataConfig#
Row and column selection configuration.
Notes
Data : dict or DataConfig
- property Featurization: FeaturesConfig#
Featurization configuration.
Notes
Featurization : dict or FeaturesConfig
- property Metadata: MetadataConfig#
DataRobot metadata and worker configuration.
Notes
Metadata : dict or MetadataConfig
- property Modeling: ModelingConfig#
Modeling configuration.
Notes
Modeling : dict or ModelingConfig
- property Partitioning: PartitioningConfig#
Partitioning configuration.
Notes
Partitioning : dict or PartitioningConfig
- property Target: TargetConfig#
Target configuration.
Notes
Target : dict or TargetConfig